Respuesta :
Answer:
Step-by-step explanation:
The summary of the given data includes;
sample size for the first school [tex]n_1[/tex] = 42
sample size for the second school [tex]n_2[/tex] = 34
so 16 out of 42 i.e [tex]x_1[/tex] = 16 and 18 out of 34 i.e [tex]x_2[/tex] = 18 have ear infection.
the proportion of students with ear infection Is as follows:
[tex]\hat p_1 = \dfrac{16}{42}[/tex] = 0.38095
[tex]\hat p_2 = \dfrac{18}{34}[/tex] = 0.5294
Since this is a two tailed test , the null and the alternative hypothesis can be computed as :
[tex]H_0 :p_1 -p_2 = 0 \\ \\ H_1 : p_1 - p_2 \neq 0[/tex]
level of significance ∝ = 0.05,
Using the table of standard normal distribution, the value of z that corresponds to the two-tailed probability 0.05 is 1.96. Thus, we will reject the null hypothesis if the value of the test statistics is less than -1.96 or more than 1.96.
The test statistics for the difference in proportion can be achieved by using a pooled sample proportion.
[tex]\bar p = \dfrac{x_1 +x_2}{n_1 +n_2}[/tex]
[tex]\bar p = \dfrac{16 +18}{42 +34}[/tex]
[tex]\bar p = \dfrac{34}{76}[/tex]
[tex]\bar p = 0.447368[/tex]
[tex]\bar p + \bar q = 1 \\ \\ \bar q = 1 -\bar p \\ \\\bar q = 1 - 0.447368 \\ \\\bar q = 0.552632[/tex]
The pooled standard error can be computed by using the formula:
[tex]S.E = \sqrt{ \dfrac{ \bar p \bar q}{ n_1} + \dfrac{\bar p \bar p}{n_2} }[/tex]
[tex]S.E = \sqrt{ \dfrac{ 0.447368 * 0.552632}{ 42} + \dfrac{ 0.447368 * 0.447368}{34} }[/tex]
[tex]S.E = \sqrt{ \dfrac{ 0.2472298726}{ 42} + \dfrac{ 0.2001381274}{34} }[/tex]
[tex]S.E = \sqrt{ 0.01177284105}[/tex]
[tex]S.E = 0.1085[/tex]
The test statistics is ;
[tex]z = \dfrac{\hat p_1 - \hat p_2}{S.E}[/tex]
[tex]z = \dfrac{0.38095- 0.5294}{0.1085}[/tex]
[tex]z = \dfrac{-0.14845}{0.1085}[/tex]
z = - 1.368
Decision Rule: Since the test statistics is greater than the rejection region - 1.96 , we fail to reject the null hypothesis.
Conclusion: There is insufficient evidence to support the claim that a difference exists between the proportions of students who have ear infections at the two schools