Respuesta :

Answer:  -1 < x < 3

Step-by-step explanation:

[tex]\dfrac{5}{(x+2)(4-x)}<1[/tex]

Step 1   The denominator cannot equal zero:

x + 2 ≠ 0    and     4 - x ≠ 0

     x ≠ -2                4 ≠ x

Place these restrictive values on the number line with an OPEN dot:

    <----------o-------------------o--------->

                -2                       4

Step 2   Find the zeros (subtract 1 from both sides and set equal to zero):

[tex]\dfrac{5}{(x+2)(4-x)}-1=0\\\\\\\dfrac{5}{(x+2)(4-x)}-\dfrac{(x+2)(4-x)}{(x+2)(4-x)}=0\\\\\\\dfrac{5-(-x^2+2x+8)}{(x+2)(4-x)}=0\\\\\\\dfrac{5+x^2-2x-8}{(x+2)(4-x)}=0\\\\\\\dfrac{x^2-2x-3}{(x+2)(4-x)}=0\\\\\\\text{Multiply both sides by (x+2)(4-x) to eliminate the denominator:}\\x^2-2x-3=0\\(x-3)(x+1)=0\\x-3=0\quad x+1=0\\x=3\quad x=-1[/tex]

Add the zeros to the number line with an OPEN dot (since it is <):

    <----------o-----o----------o----o--------->

                -2     -1            3      4

Step 3    Choose test points to the left, between, and to the right of the points plotted on the graph. Plug those values into (x - 3)(x + 1) to determine its sign (+ or -):

Left of -2: Test point x = -3: (-3 - 3)(-3 + 1) = Positive

Between -2 and -1: Test point x = -1.5: (-1.5 - 3)(-1.5 + 1) = Positive

Between -1 and 3: Test point x = 0: (0 - 3)(0 + 1) = Negative

Between 3 and 4: Test point x = 3.5: (3.5 - 3)(3.5 + 1) = Positive

Right of 4: Test point x = 5: (5 - 3)(5 + 1) = Positive

          +         +        -          +       +

    <----------o-----o----------o----o--------->

                -2     -1            3      4

Step 4  Determine the solution(s) based on the inequality symbol. Since the original inequality was LESS THAN, we want the solutions that are NEGATIVE.

Negative values only occur between -1 and 3

So the solution is:     -1 < x < 3