Consider the equation: 12x=13-x^212x=13−x 2 12, x, equals, 13, minus, x, squared 1) Rewrite the equation by completing the square. Your equation should look like (x+c)^2=d(x+c) 2 =dleft parenthesis, x, plus, c, right parenthesis, squared, equals, d or (x-c)^2=d(x−c) 2 =dleft parenthesis, x, minus, c, right parenthesis, squared, equals, d. 2) What are the solutions to the equation

Respuesta :

Answer:

[tex](x + 6)^2 = 49[/tex]

[tex]x = 1[/tex]    or [tex]x = -13[/tex]

Step-by-step explanation:

Given

[tex]12x = 13 - x^2[/tex]

Using Completing the Square

[tex]12x = 13 - x^2[/tex] ---- Add [tex]x^2[/tex] to both sides

[tex]x^2 + 12x = 13 - x^2 + x^2[/tex]

[tex]x^2 + 12x = 13[/tex]

Divide the coefficient of x by 2; then add the square to both sides

[tex]x^2 + 12x + 6^2 = 13 + 6^2[/tex]

[tex]x^2 + 12x + 36 = 13 + 36[/tex]

[tex]x^2 + 12x + 36 = 49[/tex]

Factorize

[tex]x^2 + 6x + 6x + 36 = 49[/tex]

[tex]x(x + 6) + 6(x + 6) = 49[/tex]

[tex](x + 6)(x + 6) = 49[/tex]

[tex](x + 6)^2 = 49[/tex]

Hence, the equation is [tex](x + 6)^2 = 49[/tex]

Solving further

Take square root of both sides

[tex](x + 6) = \sqrt{49}[/tex]

[tex]x + 6 = \±7[/tex]

[tex]x = \±7- 6[/tex]

This implies that

[tex]x = 7 - 6[/tex]     or [tex]x = -7 -6[/tex]

[tex]x = 1[/tex]    or [tex]x = -13[/tex]

HEnce, the solutions are [tex]x = 1[/tex]    or [tex]x = -13[/tex]

Answer:

(x+6)^2=49 and  x=−6±7

Step-by-step explanation: