Respuesta :

Answer:

[tex] s = \sqrt{30} - 2\sqrt{5} m [/tex]

Step-by-step explanation:

Given:

Formula for side length of cube, [tex] s = \sqrt{\frac{SA}{6} [/tex]

Where, S.A = surface area of a cube, and s = side length.

Required:

Difference in side length between a cube with S.A of 180 m² and a cube with S.A of 120 m²

Solution:

Difference = (side length of cube with 180 m² S.A) - (side length of cube with 120 m² S.A)

[tex]s = (\sqrt{\frac{180}{6}}) - (\sqrt{\frac{120}{6}})[/tex]

[tex] s = (\sqrt{30}) - (\sqrt{20}) [/tex]

[tex] s = \sqrt{30} - \sqrt{4*5} [/tex]

[tex] s = \sqrt{30} - 2\sqrt{5} m [/tex]