Respuesta :

Answer:

Step-by-step explanation:

The triangle inequality theorem states that the sum of any two sides of a triangle os greater than the third side.

■■■■■■■■■■■■■■■■■■■■■■■■■■

First triangle:

Let a,b and c be the sides of the triangle:

● a = 10

● b = 20

● c = 30

Now let's apply the theorem.

● a+b = 10+20=30

That's equal to the third side (c=30)

●b+c = 50

That's greater than a.

● a+c = 40

That's greater than b.

These aren't the sides of a triangel since the first inequality isn't verified.

■■■■■■■■■■■■■■■■■■■■■■■■■

Second triangle:

● a = 122

● b = 257

● c = 137

Let's apply the theorem.

● a+b = 379

That's greater than c

● a+c = 259

That's greater than b

● b+c = 394

That's greater than a

So 122,257 and 137 can be sides of a triangle.

■■■■■■■■■■■■■■■■■■■■■■■■■■

The third triangle:

● a = 8.6

● b = 12.2

● c = 2.7

Let's apply the theorem:

● a+b = 20.8

That's greater than c

● b+c = 14.9

That's greater than a

● a+c = 11.3

That isn't greater than b

So theses sides aren't the sides of triangle.

■■■■■■■■■■■■■■■■■■■■■■■■■■

● a = 1/2

● b = 1/5

● c = 1/6

Let's apply the theorem.

● a+b = 7/10

That's greater than c

● a+c = 2/3

That's greater than b

● b+c = 11/30

That isn't greater than a

So these can't be the sides of a triangle.