Respuesta :

Answer:

m<O = 134°

Step-by-step explanation:

OC = OB = radius of the circle

AC = AB = tangents of circle O

m<C = m<B = 90°. (Tangent and a radius always form 90°)

m<A = 46°

Therefore,

m<O = 360° - (m<C + m<B + m<A) => sum of angles in a quadrilateral.

m<O = 360° - (90° + 90° + 46°)

m<O = 360° - 226°

m<O = 134°.

Measure of angle A = 134°