Find n for the arithmetic sequence for which sn=345, u1=12 and d = 5 .

Answer:
n = 10
Step-by-step explanation:
The sum to n terms of an arithmetic sequence is
[tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex] [ 2a₁ + (n - 1)d ]
where a₁ is the first term and d the common difference
Here a₁ = 12 and d = 5 and [tex]S_{n}[/tex] = 345, thus
[tex]\frac{n}{2}[/tex] [ (2 × 12) + 5(n - 1) ] = 345 ( multiply both sides by 2 )
n( 24 + 5n - 5) = 690 ← distribute and simplify left side
n(19 + 5n) = 690
19n + 5n² = 690 ( subtract 690 from both sides )
5n² + 19n - 690 = 0 ← in standard form
(5n + 69)(n - 10) = 0 ← in factored form
Equate each factor to zero and solve for n
5n + 69 = 0 ⇒ 5n = - 69 ⇒ n = - [tex]\frac{69}{5}[/tex]
n - 10 = 0 ⇒ n = 10
However, n > 0 , thus n = 10