1) Given P(A) = 0.3 and P(B) = 0.5, do the following.
(a) If A and B are mutually exclusive events, compute P(A or B).
(b) If P(A and B) = 0.2, compute P(A or B).
2) Given P(A) = 0.4 and P(B) = 0.2, do the following.
(a) If A and B are independent events, compute P(A and B).
(b) If P(A | B) = 0.7, compute P(A and B).

Respuesta :

Answer:

1) a) 0.8

b) 0.6

2) a) 0.08

b) 0.14

Step-by-step explanation:

1) Given

[tex]P(A) = 0.3[/tex] and [tex]P(B) = 0.5[/tex]

Let us learn about a formula:

[tex]P(A\ or\ B) = P(A) +P(B) -P(A\ and\ B)\\OR\\P(A\cup B) = P(A) +P(B) -P(A\cap B)[/tex]

(a) If A and B are mutually exclusive i.e. no common thing in the two events.

In other words:

[tex]P(A\ and\ B)[/tex] = [tex]P(A \cap B)[/tex] = 0

Using above formula:

[tex]P(A\ or\ B) = P(A) +P(B) -P(A\ and\ B)\\\Rightarrow P(A\ or\ B) = 0.3 + 0.5 -0 = \bold{0.8}[/tex]

(b)  P(A and B) = 0.2

Using above formula:

[tex]P(A\ or\ B) = P(A) +P(B) -P(A\ and\ B)\\\Rightarrow P(A\ or\ B) = 0.3 + 0.5 -0.2 = \bold{0.6}[/tex]

*************************************

1) Given

[tex]P(A) = 0.4[/tex] and [tex]P(B) = 0.2[/tex]

Let us learn about a formula:

[tex]P(A\ and\ B) = P(B) \times P(A/B)[/tex]  for dependent events

[tex]P(A\ and\ B) = P(A) \times P(B)[/tex] for independent events.

(a) If A and B are independent events :

Using the above formula for independent events:

[tex]P(A\ and\ B) = 0.4 \times 0.2 = \bold{0.08}[/tex]

(b)  [tex]P(A / B) = 0.7[/tex]

Using above formula:

[tex]P(A\ and\ B) = P(B) \times P(A/B) = 0.2 \times 0.7 = \bold{0.14}[/tex]