A sharp edged orifice with a 60 mm diameter opening in the vertical side of a large tank discharges under a head of 6 m. If the coefficient of contraction is 0.68 and the coefficient of velocity is 0.92, what is the discharge?

Respuesta :

Answer:

The discharge rate is [tex]Q = 0.0192 \ m^3 /s[/tex]

Explanation:

From the question we are told that

   The  diameter is  [tex]d = 60 \ mm = 0.06 \ m[/tex]

    The  head is  [tex]h = 6 \ m[/tex]

     The  coefficient of contraction is  [tex]Cc = 0.68[/tex]

     The  coefficient of  velocity is  [tex]Cv = 0.92[/tex]

The radius is mathematically evaluated as

         [tex]r = \frac{d}{2}[/tex]

substituting values

        [tex]r = \frac{ 0.06 }{2}[/tex]

        [tex]r = 0.03 \ m[/tex]

The  area is mathematically represented as

      [tex]A = \pi r^2[/tex]

substituting values

      [tex]A = 3.142 * (0.03)^2[/tex]

      [tex]A = 0.00283 \ m^2[/tex]

 The  discharge rate is mathematically represented as

        [tex]Q = Cv *Cc * A * \sqrt{ 2 * g * h}[/tex]

substituting values

       [tex]Q = 0.68 * 0.92* 0.00283 * \sqrt{ 2 * 9.8 * 6}[/tex]

       [tex]Q = 0.0192 \ m^3 /s[/tex]