Answer:
The discharge rate is [tex]Q = 0.0192 \ m^3 /s[/tex]
Explanation:
From the question we are told that
The diameter is [tex]d = 60 \ mm = 0.06 \ m[/tex]
The head is [tex]h = 6 \ m[/tex]
The coefficient of contraction is [tex]Cc = 0.68[/tex]
The coefficient of velocity is [tex]Cv = 0.92[/tex]
The radius is mathematically evaluated as
[tex]r = \frac{d}{2}[/tex]
substituting values
[tex]r = \frac{ 0.06 }{2}[/tex]
[tex]r = 0.03 \ m[/tex]
The area is mathematically represented as
[tex]A = \pi r^2[/tex]
substituting values
[tex]A = 3.142 * (0.03)^2[/tex]
[tex]A = 0.00283 \ m^2[/tex]
The discharge rate is mathematically represented as
[tex]Q = Cv *Cc * A * \sqrt{ 2 * g * h}[/tex]
substituting values
[tex]Q = 0.68 * 0.92* 0.00283 * \sqrt{ 2 * 9.8 * 6}[/tex]
[tex]Q = 0.0192 \ m^3 /s[/tex]