Respuesta :

Answer:

Mean = $70.8

Median = $70

Mode = $60

Step-by-step explanation:

From the line plot attached,

Prices of the sunglasses are,

$20, $20, $50, $50, $50, $60, $60, $60, $60, $60, $60, $70, $70, $70, $80, $80, $80, $80, $90, $90, $90, $90, $100, $100, $130

Since mean of the data = Average of the terms

                                       [tex]=\frac{\text{Sum of the terms in the data set}}{\text{Number of terms}}[/tex]

                                       = [tex]\frac{2(20)+3(50)+6(60)+3(70)+4(80)+4(90)+2(100)+130}{(2+3+6+3+4+2+1)}[/tex]

                                       = [tex]\frac{40+150+360+210+320+360+200+130}{25}[/tex]

                                       = [tex]\frac{1770}{25}[/tex]

                                       = $70.8

Median = Middle term of the data set

Since number of terms of the data set are odd (25)

Therefore, median = [tex](\frac{n+1}{2})\text{th term}[/tex] [where n = number of terms in the data set]

                               = [tex]\frac{25+1}{2}[/tex]

                               = 13th term

13th term of the data set is $70.

Therefore, Median = $70

Mode = Term repeated the most

In the data set $60 is the term which is repeated the most (6 times).

Therefore, Mode = $60