Respuesta :

Answer:

11.21157846 =x

Step-by-step explanation:

We know log b (a) = c  can be written as b^c =a

log 3 (x) = 2.2

3^2.2 = x

11.21157846 =x

Answer:

[tex]\large \boxed{\sf \bold{A.} \ x=11.21}[/tex]

Step-by-step explanation:

[tex]\large \sf log_3 (x)=2.2[/tex]

Solve this by converting the logarithmic statement into its equivalent exponential form, using the relationship:

[tex]\large \sf log_b(y)=x[/tex]

[tex]\large{\sf y=b^x}[/tex]

Apply the relationship.

[tex]\large \sf log_3 (x)=2.2[/tex]

[tex]\large \sf x=3^{2.2}[/tex]

[tex]\large \sf x=11.21157845...[/tex]

[tex]\large \sf x \approx 11.21[/tex]