Respuesta :
Answer:
The oxidation state of silver in [tex]\rm Ag_2O[/tex] is [tex]+1[/tex].
The oxidation state of sulfur in [tex]\rm SO_2[/tex] is [tex]+4[/tex].
Explanation:
The oxidation states of atoms in a compound should add up to zero.
Ag₂O
There are two silver [tex]\rm Ag[/tex] atoms and one oxygen [tex]\rm O[/tex] atom in one formula unit of [tex]\rm Ag_2O[/tex]. Therefore:
[tex]\begin{aligned}&\rm 2 \times \text{Oxidation state of $\rm Ag$}+ \rm 1 \times \text{Oxidation state of $\rm O$} = 0\end{aligned}[/tex].
The oxidation state of oxygen in most compounds (with the exception of peroxides and fluorides) is [tex]-2[/tex]. Silver oxide [tex]\rm Ag_2O[/tex] isn't an exception. Therefore:
[tex]\begin{aligned}&\rm 2 \times \text{Oxidation state of $\rm Ag$}+ \rm 1 \times \text{Oxidation state of $\rm O$} = 0\\ &\rm 2 \times \text{Oxidation state of $\rm Ag$}+ \rm 1 \times (-2) = 0\end{aligned}[/tex].
Solve this equation for the (average) oxidation state of [tex]\rm Ag[/tex]:
[tex]\text{Oxidation state of $\rm Ag$} = 1[/tex].
SO₂
Similarly, because there are one sulfur [tex]\rm S[/tex] atom and two oxygen [tex]\rm O[/tex] atoms in each [tex]\rm SO_2[/tex] molecules:
[tex]\begin{aligned}&\rm 1\times \text{Oxidation state of $\rm S$}+ \rm 2 \times \text{Oxidation state of $\rm O$} = 0\end{aligned}[/tex].
The oxidation state of [tex]\rm O[/tex] in [tex]\rm SO_2[/tex] is also [tex]-2[/tex], not an exception, either.
Therefore:
[tex]\begin{aligned}&\rm 1 \times \text{Oxidation state of $\rm S$}+ \rm 2 \times \text{Oxidation state of $\rm O$} = 0\\ &\rm 1 \times \text{Oxidation state of $\rm S$}+ \rm 2 \times (-2) = 0\end{aligned}[/tex].
Solve this equation for the oxidation state of [tex]\rm S[/tex] here:
[tex]\text{Oxidation state of $\rm S$} = 4[/tex].