Respuesta :

Answer:

P(A∩B) = 7/80

P(A∩B) = 0.0875

Step-by-step explanation:

Given

P(B)=7/20

P(A|B)=¼

Required

P(A∩B)=?

The given probability shows conditional probability and the relationship between the given parameters is as follows.

P(A∩B) = P(B) * P(A|B)

Substitute ¼ for P(A|B) and 7/20 for P(B)

The expression

P(A∩B) = P(B) * P(A|B) becomes

P(A∩B) = 7/20 * ¼

P(A∩B) = 7/80

P(A∩B) = 0.0875

Hence, the calculated P(A∩B) is 7/80 or 0.0875