When a monochromatic light of wavelength 433 nm incident on a double slit of slit separation 6 µm, there are 5 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.9 nm for the same double slit?

Respuesta :

Answer:

The number of interference fringes is  [tex]n = 3[/tex]

Explanation:

From the question we are told that

     The wavelength is  [tex]\lambda = 433 \ nm = 433 *10^{-9} \ m[/tex]

      The distance of separation is  [tex]d = 6 \mu m = 6 *10^{-6} \ m[/tex]

       The  order of maxima is m =  5

       

The  condition for constructive interference is

       [tex]d sin \theta = n \lambda[/tex]

=>     [tex]\theta = sin^{-1} [\frac{5 * 433 *10^{-9}}{ 6 *10^{-6}} ][/tex]

=>    [tex]\theta = 21.16^o[/tex]

So at  

      [tex]\lambda_1 = 632.9 nm = 632.9*10^{-9} \ m[/tex]

   [tex]6 * 10^{-6} * sin (21.16) = n * 632.9 *10^{-9}[/tex]

=>    [tex]n = 3[/tex]