All of 4x+8 is under a cube root sign.
=====================================================
Work Shown:
To find the inverse, we swap x and y, then solve for y.
[tex]y = \frac{1}{4}x^3 - 2\\\\x = \frac{1}{4}y^3 - 2\\\\x+2 = \frac{1}{4}y^3\\\\4(x+2) = y^3\\\\4x+8 = y^3\\\\y^3 = 4x+8\\\\y = \sqrt[3]{4x+8}\\\\[/tex]
------------
Side note:
If [tex]f(x) = \frac{1}{4}x^3 - 2[/tex] and [tex]g(x) = \sqrt[3]{4x+8}[/tex], then [tex]f(g(x)) = x[/tex] and [tex]g(f(x)) = x[/tex]for all x values in the domain. Effectively, you use function composition to confirm that we have the correct inverse equation.