light of wavelength 550 nm is incident on a diffraction grating that is 1 cm wide and has 1000 slits. What is the dispersion of the m = 2 line?

Respuesta :

Answer:

The dispersion is [tex]D = 2.01220 *10^{5} \ rad/m[/tex]

Explanation:

From the question we are told that

    The wavelength of the light is  [tex]\lambda = 550 \ = 550 *10^{-9} \ n[/tex]

    The width of the grating is[tex]k = 1\ cm = 0.01 \ m[/tex]

    The  number of slit is  N =  1000 slits

    The order of the maxima is  m =  2

 

Generally the spacing between the slit is mathematically represented as

         [tex]d = \frac{k}{N}[/tex]

substituting values

        [tex]d = \frac{ 0.01}{1000}[/tex]

       [tex]d = 1.0 *10^{-5} \ m[/tex]

Generally the condition for constructive interference is

       [tex]d\ sin(\theta ) = m * \lambda[/tex]

substituting values

      [tex]1.0 *10^{-5} sin (\theta) = 2 * 550 *10^{-9}[/tex]

       [tex]\theta = sin^{-1} [\frac{ 2 * 550 *10^{-9}}{ 1.0 *10^{-5}} ][/tex]

      [tex]\theta = 6.315^o[/tex]

Generally the dispersion is mathematically represented as

           [tex]D = \frac{ m }{d cos(\theta )}[/tex]

substituting values

          [tex]D = \frac{ 2 }{ 1.0 *10^{-5} cos(6.315 )}[/tex]

           [tex]D = 2.01220 *10^{5} \ rad/m[/tex]