Find the​ mean, variance, and standard deviation of the binomial distribution with the given values of n and p. ​, The​ mean, ​, is nothing. ​(Round to the nearest tenth as​ needed.)

Respuesta :

Complete Question

Find the​ mean, variance, and standard deviation of the binomial distribution with the given values of n and p. ​, The​ mean, ​, is nothing. ​(Round to the nearest tenth as​ needed.)

    p =  0.6   n =  18

Answer:

The mean   [tex]\mu = 10.5[/tex]

The standard deviation [tex]\sigma = 2.08[/tex]

The  variance   [tex]var = 4.32[/tex]

Step-by-step explanation:

From the question we are told that

      The probability of success   is  [tex]p = 0.6[/tex]

      The  sample size is [tex]n = 18[/tex]

  Generally given that the distribution is binomial, then the probability of failure is mathematically represented as

              [tex]q = 1- p[/tex]

substituting values

              [tex]q = 1- 0.6[/tex]

              [tex]q =0.4[/tex]

Generally the mean is mathematically evaluated as

             [tex]\mu = np[/tex]

substituting values

             [tex]\mu = 18 * 0.6[/tex]    

             [tex]\mu = 10.5[/tex]

The  standard deviation is evaluated as

              [tex]\sigma = \sqrt{npq}[/tex]

substituting values

               [tex]\sigma = \sqrt{18 * 0.6 * 0.4}[/tex]

              [tex]\sigma = 2.08[/tex]

The variance is evaluated as

               [tex]var = \sigma^2[/tex]

substituting value

              [tex]var = 2.08^2[/tex]

              [tex]var = 4.32[/tex]