Respuesta :
Answer:
the length of DB is 17 in
Step-by-step explanation:
Consider the sketch attached.
We will draw an imaginary line from point C to met line AB at point E.
A right-angled triangle will now be formed between points CBE.
The dimensions of the right-angled triangle will be:
CB = 10 in
CE= 8 in
EB = unknown
We will now proceed to find out the length of side EB using the Pythagoras' theorem.
[tex]EB =\sqrt{CB^2 -CE^2} \\EB =\sqrt{10^2 -8^2} \\EB = 6 in[/tex]
From the shape, we can find out that another right-angled triangle is made between points DAB.
The dimensions of the triangle are:
DA= 8in
AB = 9 in + 6 in = 15 in
DB = unknown.
We will now proceed to find out the length of side DB using the Pythagoras' theorem.
[tex]DB =\sqrt{AD^2 +AB^2} \\DB =\sqrt{8^2 +15^2} \\DB = 17 in[/tex]
Therefore, the length of DB is 17 in
