Fill in the blank with a constant, so that the resulting quadratic expression is the square of a binomial. $\[x^2 + 22x + \underline{~~~~}.\]$

Respuesta :

Answer:

[tex]$\[x^2 + 22x + 121\]$[/tex]

Step-by-step explanation:

Given

[tex]$\[x^2 + 22x + \underline{~~~~}.\]$[/tex]

Required

Fill in the gap

Represent the blank with k

[tex]$\[x^2 + 22x + k\]$[/tex]

Solving for k...

To do this, we start by getting the coefficient of x

Coefficient of x = 22

Divide the coefficient by 2

[tex]Result = 22/2[/tex]

[tex]Result = 11[/tex]

Take the square of this result, to give k

[tex]k= 11^2[/tex]

[tex]k= 121[/tex]

Substitute 121 for k

[tex]$\[x^2 + 22x + 121\]$[/tex]

The expression can be factorized as follows;

[tex]x^2 + 11x + 11x + 121[/tex]

[tex]x(x + 11)+11(x+11)[/tex]

[tex](x+11)(x+11)[/tex]

[tex](x+11)^2[/tex]

Hence, the quadratic expression is [tex]$\[x^2 + 22x + 121\]$[/tex]

The answer would be x^2+22x+121