Respuesta :
Answer:
[tex]$\[x^2 + 22x + 121\]$[/tex]
Step-by-step explanation:
Given
[tex]$\[x^2 + 22x + \underline{~~~~}.\]$[/tex]
Required
Fill in the gap
Represent the blank with k
[tex]$\[x^2 + 22x + k\]$[/tex]
Solving for k...
To do this, we start by getting the coefficient of x
Coefficient of x = 22
Divide the coefficient by 2
[tex]Result = 22/2[/tex]
[tex]Result = 11[/tex]
Take the square of this result, to give k
[tex]k= 11^2[/tex]
[tex]k= 121[/tex]
Substitute 121 for k
[tex]$\[x^2 + 22x + 121\]$[/tex]
The expression can be factorized as follows;
[tex]x^2 + 11x + 11x + 121[/tex]
[tex]x(x + 11)+11(x+11)[/tex]
[tex](x+11)(x+11)[/tex]
[tex](x+11)^2[/tex]
Hence, the quadratic expression is [tex]$\[x^2 + 22x + 121\]$[/tex]