Respuesta :

Answer:

( n+1) /2 *( 3n+2)

Step-by-step explanation:

n/2 * ( 3n-1)

We want the n+1 term

Replace n with n+1

( n+1) /2 *( 3( n+1) -1)

Distribute

( n+1) /2 *( 3n+3 -1)

( n+1) /2 *( 3n+2)

Answer:

[tex]\large \boxed{\sf C. \ \frac{n+1}{2} (3n+2)}[/tex]

Step-by-step explanation:

[tex]\displaystyle \frac{n}{2} (3n-1)[/tex]

To find the (n+1)st term, replace the n variable with n+1.

[tex]\displaystyle \frac{n+1}{2} (3(n+1)-1)[/tex]

Expand brackets.

[tex]\displaystyle \frac{n+1}{2} (3n+3-1)[/tex]

Subtract like terms in brackets.

[tex]\displaystyle \frac{n+1}{2} (3n+2)[/tex]