A fish is 11.9 cm from the front surface of a fish bowl of radius 33 cm. Where does the fish appear to be to someone in air viewing it from in front of the bowl

Respuesta :

Answer:

The fish would appear 42.7 cm on the left side from the front of the bowl.

Explanation:

The fish (object) distance = 11.9 cm, radius of curvature of the bowl = 33 cm. The distance of image of the fish (image distance) can be determined by applying the mirror formula;

[tex]\frac{1}{f}[/tex] = [tex]\frac{1}{u}[/tex] + [tex]\frac{1}{v}[/tex]

where f is the focal length of the reflecting surface, u is the object distance and v is the image distance.

But, f = [tex]\frac{radius of curvature}{2}[/tex]

         = [tex]\frac{33}{2}[/tex]

       f = 16.5 cm

Substitute f = 16.5 = [tex]\frac{165}{10}[/tex], and u = 11.9 = [tex]\frac{119}{10}[/tex] in equation 1;

[tex]\frac{10}{165}[/tex] = [tex]\frac{10}{119}[/tex] + [tex]\frac{1}{v}[/tex]

[tex]\frac{1}{v}[/tex] = [tex]\frac{10}{165}[/tex] - [tex]\frac{10}{119}[/tex]

  = [tex]\frac{1190 - 1650}{19635}[/tex]

[tex]\frac{1}{v}[/tex] = [tex]\frac{-460}{19635}[/tex]

⇒ v  = [tex]\frac{19635}{-460}[/tex]

       = -42.6848

    v = 42.7 cm

The fish would appear 42.7 cm on the left side from the front of the bowl.