Respuesta :
Answer:
The fish would appear 42.7 cm on the left side from the front of the bowl.
Explanation:
The fish (object) distance = 11.9 cm, radius of curvature of the bowl = 33 cm. The distance of image of the fish (image distance) can be determined by applying the mirror formula;
[tex]\frac{1}{f}[/tex] = [tex]\frac{1}{u}[/tex] + [tex]\frac{1}{v}[/tex]
where f is the focal length of the reflecting surface, u is the object distance and v is the image distance.
But, f = [tex]\frac{radius of curvature}{2}[/tex]
= [tex]\frac{33}{2}[/tex]
f = 16.5 cm
Substitute f = 16.5 = [tex]\frac{165}{10}[/tex], and u = 11.9 = [tex]\frac{119}{10}[/tex] in equation 1;
[tex]\frac{10}{165}[/tex] = [tex]\frac{10}{119}[/tex] + [tex]\frac{1}{v}[/tex]
[tex]\frac{1}{v}[/tex] = [tex]\frac{10}{165}[/tex] - [tex]\frac{10}{119}[/tex]
= [tex]\frac{1190 - 1650}{19635}[/tex]
[tex]\frac{1}{v}[/tex] = [tex]\frac{-460}{19635}[/tex]
⇒ v = [tex]\frac{19635}{-460}[/tex]
= -42.6848
v = 42.7 cm
The fish would appear 42.7 cm on the left side from the front of the bowl.