An ideal turbojet engine is analyzed using the cold air standard method. Given specific operating conditions determine the temperature, pressure, and enthalpy at each state, and the exit velocity.

--Given Values--
T1 (K) = 249
P1 (kPa) = 61
V1 (m/s) = 209
rp = 10.7
rc = 1.8

Required:
a. Determine the temperature (K) at state 2.
b. Determine the pressure (kPa) at state 2.
c. Determine the specific enthalpy (kJ/kg) at state 2.
d. Determine the temperature (K) at state 3.

Respuesta :

Answer:

a.  the temperature (K) at state 2 is  [tex]\mathbf{T_2 =270.76 \ K}}[/tex]

b.  the pressure (kPa) at state 2 is   [tex]\mathtt{ \mathbf{ p_2 = 81.79 \ kPa }}[/tex]

c.  the specific enthalpy (kJ/kg) at state 2 is [tex]\mathbf{h_2 = 271.84 \ kJ/kg}}[/tex]

d.  the temperature (K) at state 3 is   [tex]\mathbf{ T_3 = 532.959 \ K}[/tex]

Explanation:

From the given information:

T1 (K) = 249

P1 (kPa) = 61

V1 (m/s) = 209

rp = 10.7

rc = 1.8

The objective is  to determine the following:

a. Determine the temperature (K) at state 2.

b. Determine the pressure (kPa) at state 2.

c. Determine the specific enthalpy (kJ/kg) at state 2.

d. Determine the temperature (K) at state 3.

To start with the specific enthalpy (kJ/kg) at state 2.

By the relation of steady -flow energy balance equation for diffuser (isentropic)

[tex]h_1 + \dfrac{V_1^2}{2}=h_2+\dfrac{V^2_2}{2}[/tex]

[tex]h_1 + \dfrac{V_1^2}{2}=h_2+0[/tex]

[tex]h_2=h_1 + \dfrac{V_1^2}{2}[/tex]

For ideal gas;enthalpy is only a function of temperature, hence [tex]c_p[/tex]T = h

where;

[tex]h_1[/tex] is the specific enthalpy at inlet  = [tex]c_pT_1[/tex]

[tex]h_2[/tex] is the specific enthalpy at  outlet = [tex]c_pT_2[/tex]

[tex]c_p[/tex]  = 1.004  kJ/kg.K or 1004 J/kg.K

Given that:

[tex]T_1[/tex] (K) = 249

[tex]V_1[/tex] (m/s) = 209

[tex]h_2=C_pT_1+ \dfrac{V_1^2}{2}[/tex]

[tex]h_2=1004 \times 249+ \dfrac{209^2}{2}[/tex]

[tex]h_2 = 249996+21840.5[/tex]

[tex]\mathbf{\mathtt{h_2 = 271836.5 \ J/kg}}[/tex]

[tex]\mathbf{h_2 = 271.84 \ kJ/kg}}[/tex]

Determine the temperature (K) at state 2.

SInce; [tex]\mathtt{h_2 = c_pT_2 = 271.84 \ kJ/kg}[/tex]

[tex]\mathtt{ c_pT_2 = 271.84 \ kJ/kg}[/tex]

[tex]\mathtt{T_2 = \dfrac{271.84 \ kJ/kg}{ c_p}}[/tex]

[tex]\mathtt{T_2 = \dfrac{271.84 \ kJ/kg}{1.004 \ kJ/kg.K}}[/tex]

[tex]\mathbf{T_2 =270.76 \ K}}[/tex]

Determine the pressure (kPa) at state 2.

For isentropic condition,

[tex]\mathtt{ \dfrac{T_2}{T_1}= \begin {pmatrix} \dfrac{p_2}{p_1} \end {pmatrix} ^\dfrac{k-1}{k}}[/tex]

where ;

k = specific heat ratio = 1.4

[tex]\mathtt{ \dfrac{270.76}{249}= \begin {pmatrix} \dfrac{p_2}{61} \end {pmatrix} ^\dfrac{1.4-1}{1.4}}[/tex]

[tex]\mathtt{ 1.087389558= \begin {pmatrix} \dfrac{p_2}{61} \end {pmatrix} ^\dfrac{0.4}{1.4}}[/tex]

[tex]\mathtt{ 1.087389558 \times 61 ^ {^ \dfrac{0.4}{1.4} }}=p_2} ^\dfrac{0.4}{1.4}}[/tex]

[tex]\mathtt{ 3.519487255=p_2} ^\dfrac{0.4}{1.4}}[/tex]

[tex]\mathtt{ \mathbf{ p_2 = \sqrt[0.4]{3.519487255^{1.4}} }}[/tex]

[tex]\mathtt{ \mathbf{ p_2 = 81.79 \ kPa }}[/tex]

d. Determine the temperature (K) at state 3.

For the isentropic process

[tex]\mathtt{\dfrac{T_3}{T_2} = \begin {pmatrix} \dfrac{p_3}{p_2} \end {pmatrix}^{\dfrac{k-1}{k}}}[/tex]

where;

[tex]\mathtt{\dfrac{p_3}{p_2} }[/tex] is the compressor ratio [tex]\mathtt{r_p}[/tex]

Given that ; the compressor ratio [tex]\mathtt{r_p}[/tex] = 10.7

[tex]\mathtt{\dfrac{T_3}{T_2} = \begin {pmatrix} r_p \end {pmatrix}^{\dfrac{k-1}{k}}}[/tex]

[tex]\mathtt{\dfrac{T_3}{270.76} = \begin {pmatrix} 10.7 \end {pmatrix}^{\dfrac{1.4-1}{1.4}}}[/tex]

[tex]\mathtt{\dfrac{T_3}{270.76} = \begin {pmatrix} 10.7 \end {pmatrix}^{^ \dfrac{0.4}{1.4}}}[/tex]

[tex]\mathtt{{T_3}{} =270.76 \times\begin {pmatrix} 10.7 \end {pmatrix}^{^ \dfrac{0.4}{1.4}}}[/tex]

[tex]\mathbf{ T_3 = 532.959 \ K}[/tex]