Respuesta :

Complete Question:

In ∆ABC, if sin A = 4/5 and tan A = 4/3, then what is cos A?

Answer:

[tex]cos A= \frac{3}{5}[/tex]

Explanation:

Given

[tex]sin A = 4/5[/tex]

[tex]tan A = 4/3[/tex]

Required

[tex]cos A[/tex]

In trigonometry;

[tex]tanA = \frac{sinA}{cosA}[/tex]

Multiply both sides by cosA

[tex]cos A * tanA = \frac{sinA}{cosA} * cos A[/tex]

[tex]cos A * tanA = sinA[/tex]

Divide both sides by tanA

[tex]\frac{cos A * tanA}{tanA} = \frac{sinA}{tanA}[/tex]

[tex]cos A= \frac{sinA}{tanA}[/tex]

Substitute values for sinA and tanA

[tex]cos A= \frac{4/5}{4/3}[/tex]

[tex]cos A= \frac{4}{5} / \frac{4}{3}[/tex]

[tex]cos A= \frac{4}{5} * \frac{3}{4}[/tex]

[tex]cos A= \frac{4 * 3}{5 * 4}[/tex]

[tex]cos A= \frac{3}{5}[/tex]