Respuesta :

Answer:

Step-by-step explanation:

Let the quadratic equation of the function by the points in the given equation is,

f(x) = ax² + bx + c

If the points lying on the graph are (-3, -10), (-4, -8) and (0, 8),

For (0, 8),

f(0) = a(0)² + b(0) + c

8 = c

For a point (-3, -10),

f(-3) = a(-3)² + b(-3) + 8

-10 = 9a - 3b + 8

9a - 3b = -18

3a - b = -6 --------(1)

For (-4, -8),

f(-4) = a(-4)² + b(-4) + 8

-8 = 16a - 4b + 8

-16 = 16a - 4b

4a - b = -4 ------(2)

Subtract equation (1) from equation (2)

(4a - b) - (3a - b) = -4 + 6

a = 2

From equation (1),

6 - b = -6

b = 12

Function will be,

f(x) = 2x² + 12x + 8

     = 2(x² + 6x) + 8

     = 2(x² + 6x + 9 - 9) + 8

     = 2(x² + 6x + 9) - 18 + 8

     = 2(x + 3)² - 10

By comparing this function with the vertex form of the function,

y = a(x - h)² + k

where (h, k) is the vertex.

Vertex of the function 'f' will be (-3, -10)

And axis of symmetry will be,

x = -3

From the given graph, axis of the symmetry of the function 'g' is; x = -3

Therefore, both the functions will have the same axis of symmetry.

y-intercept of the function 'f' → y = 8 Or (0, 8)

y-intercept of the function 'g' → y = -2 Or (0, -2)

Therefore, y-intercept of 'f' is greater than 'g'

Average rate of change of function 'f' = [tex]\frac{f(b)-f(a)}{b-a}[/tex] in the interval [a, b]

                                                               = [tex]\frac{f(-3)-f(-6)}{-3+6}[/tex]

                                                               = [tex]\frac{-10-8}{3}[/tex]

                                                               = -6

Average rate of change of function 'g' = [tex]\frac{g(b)-g(a)}{b-a}[/tex]

                                                                = [tex]\frac{g(-3)-g(-6)}{-3+6}[/tex]

                                                                = [tex]\frac{7+2}{-3+6}[/tex]

                                                                = 3

Therefore, Average rate of change of function 'f' is less than 'g'.