A television screen has a length to width ratio of 8 to 5 and a perimeter of 117 inches. What is the diagonal measure of the screen (to the nearest tenth of an inch)?

Respuesta :

Answer:

[tex]D = 42.5\ inch[/tex]

Step-by-step explanation:

Given

[tex]L = Length[/tex] and [tex]W = Width[/tex]

[tex]L:W = 8: 5[/tex]

[tex]Perimeter = 117[/tex]

Required

Determine the Diagonal

First, the dimension of the screen has to be calculated;

Recall that; [tex]L:W = 8: 5[/tex]

Convert to division

[tex]\frac{L}{W} = \frac{8}{5}[/tex]

Multiply both sides by W

[tex]W * \frac{L}{W} = \frac{8}{5} * W[/tex]

[tex]L = \frac{8W}{5}[/tex]

The perimeter of a rectangle:

[tex]Perimeter = 2(L+W)[/tex]

Substitute [tex]L = \frac{8W}{5}[/tex]

[tex]Perimeter = 2(\frac{8W}{5}+W)[/tex]

Take LCM

[tex]Perimeter = 2(\frac{8W + 5W}{5})[/tex]

[tex]Perimeter = 2(\frac{13W}{5})[/tex]

Substitute 117 for Perimeter

[tex]117 = 2(\frac{13W}{5})[/tex]

[tex]117 = \frac{26W}{5}[/tex]

Multiply both sides by [tex]\frac{5}{26}[/tex]

[tex]\frac{5}{26} * 117 = \frac{26W}{5} * \frac{5}{26}[/tex]

[tex]\frac{5 * 117}{26} = W[/tex]

[tex]\frac{585}{26} = W[/tex]

[tex]22.5 = W[/tex]

[tex]W = 22.5[/tex]

Recall that

[tex]L = \frac{8W}{5}[/tex]

[tex]L = \frac{8 * 22.5}{5}[/tex]

[tex]L = \frac{180}{5}[/tex]

[tex]L = 36[/tex]

The diagonal of a rectangle is calculated using Pythagoras theorem as thus;

[tex]D = \sqrt{L^2 + W^2}[/tex]

Substitute values for L and W

[tex]D = \sqrt{36^2 + 22.5^2}[/tex]

[tex]D = \sqrt{1296 + 506.25}[/tex]

[tex]D = \sqrt{1802.25}[/tex]

[tex]D = \sqrt{1802.25}[/tex]

[tex]D = 42.4529150943[/tex]

[tex]D = 42.5\ inch[/tex] (Approximated)