A research center claims that ​% of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of adults in that​ country, ​% say that they would travel into space on a commercial flight if they could afford it. At ​, is there enough evidence to reject the research

Respuesta :

Complete Question

A research center claims that ​30% of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of 700 adults in that​ country, ​34% say that they would travel into space on a commercial flight if they could afford it. At ​, is there enough evidence to reject the research center's claim

Answer:

Yes there is  sufficient evidence to reject the research center's claim.

Step-by-step explanation:

From the question we are told that

     The population proportion is  p = 0.30

      The sample proportion is  [tex]\r p = 0.34[/tex]

       The  sample size is  n = 700

The null hypothesis is  [tex]H_o : p = 0.30[/tex]

 The  alternative hypothesis is  [tex]H_a : p \ne 0.30[/tex]

Here we are going to be making use of  level of significance  =  0.05 to carry out this test

Now we will obtain the critical value of  [tex]Z_{\alpha }[/tex] from the normal distribution table , the value is  [tex]Z_{\alpha } = 1.645[/tex]

 Generally the test statistics is mathematically represented as

            [tex]t = \frac{ \r p - p }{ \sqrt{ \frac{ p (1-p)}{n} } }[/tex]

substituting values

              [tex]t = \frac{ 0.34 - 0.30 }{ \sqrt{ \frac{ 0.30 (1-0.30 )}{ 700} } }[/tex]

              [tex]t = 2.31[/tex]

Looking at the values of t  and  [tex]Z_{\alpha }[/tex] we see that [tex]t > Z_{\alpha }[/tex] hence the null hypothesis is rejected

 Thus we can conclude that there is  sufficient evidence to reject the research center's claim.