Respuesta :

Complete Question

Assume that adults have IQ scores that are normally distributed with a mean μ=100 and a standard deviation σ=15. Find the probability that a randomly selected adult has an IQ between 81 and 119.

Answer:

The probability is  [tex]P( x_1 < X < x_2) = 0.79474[/tex]

Step-by-step explanation:

From the question we are told that

   The standard deviation is  σ = 15.

    The mean μ= 100

     The range we are considering is [tex]x_1 = 81 , \ x_2 = 119[/tex]

Now given that IQ scores are normally distributed

    Then the probability that a randomly selected adult has an IQ between 81 and 119 is mathematically represented as

               [tex]P( x_1 < X < x_2) = P(\frac{x_1 - \mu }{\sigma } <\frac{X - \mu }{\sigma } < \frac{x_2- \mu }{\sigma } )[/tex]

 Generally

                [tex]\frac{X - \mu }{\sigma } = Z(The \ standardized \ value \ of \ X )[/tex]

So

              [tex]P( x_1 < X < x_2) = P(\frac{x_1 - \mu }{\sigma } <Z < \frac{x_2- \mu }{\sigma } )[/tex]

substituting values

               [tex]P( x_1 < X < x_2) = P(\frac{81 - 100 }{15 } <Z < \frac{119- 100 }{15 } )[/tex]

               [tex]P( x_1 < X < x_2) = P( -1.2667 <Z <1.2667 )[/tex]

               [tex]P( x_1 < X < x_2) = P(Z <1.2667 )-P( Z < -1.2667 )[/tex]

From the standardized Z table

               [tex]P(Z <-1.2667 ) = 0.10263[/tex]

And        [tex]P(Z <1.2667 ) = 0.89737[/tex]

So

            [tex]P( x_1 < X < x_2) = 0.89737 - 0.10263[/tex]

            [tex]P( x_1 < X < x_2) = 0.79474[/tex]