Respuesta :

Answer:

Step-by-step explanation:

Given that:

[tex]\mathtt{f(x) = ax^2 + bx + c}[/tex]

The derivative of the function of x is  [tex]\mathtt{f'(x) = 2ax + b}[/tex]

Thus; f(x) is increasing when f'(x) > 0

f(x) is decreasing when f'(x) < 0

i.e

f'(x) > 0 , when  b > 0  and a < 0

2ax + b < 0

2ax < - b

[tex]\mathtt{x < \dfrac{-b}{2a}}[/tex]

f'(x) < 0 , when  b < 0  and a > 0

2ax + b > 0

2ax > - b

[tex]\mathtt{x > \dfrac{-b}{2a}}[/tex]