Markchi
contestada

Write an equation showing the relationship between the lengths of the three sides of a right triangle.​

Write an equation showing the relationship between the lengths of the three sides of a right triangle class=

Respuesta :

Answer:

Below

Step-by-step explanation:

First triangle)

This triangle is a right one so we will apply the pythagorian theorem.

● 25 is the hypotenus

● 25^2 = b^2 + 24^2

■■■■■■■■■■■■■■■■■■■■■■■■■■

Seconde triangle)

Again it's a right triangle

x is the hypotenus.

● x^2 = 12^2 +5^2

● 12^2 = x^2-5^2

■■■■■■■■■■■■■■■■■■■■■■■■■■

This is a right triangle

AC is the hypotenus.

● AC^2 = BC^2 + BA^2

Notice that: BC = BE+EC and BA=BD+DA

● AC^2 = (BE+EC)^2 + (BD+DA)^2

Answer:  2) b = 7       3) x = [tex]\sqrt{119}[/tex]

Step-by-step explanation:

Use Pythagorean Theorem: (leg₁)² + (leg₂)² = hypotenuse²

2) b² + 24² = 25²

   b² + 576 = 625

            b² = 49

         [tex]\sqrt{b^2}=\sqrt{49}[/tex]

            b = 7

3) 5² + x² = 12²

   25 + x² = 144

            x² = 119

        [tex]\sqrt{x^2}=\sqrt{119}[/tex]

           [tex]x=\sqrt{119}[/tex]