The orbital motion of Earth around the Sun leads to an observable parallax effect on the nearest stars. For each star listed, calculate the distance in parsecs before converting that distance to astronomical units. A. Sirius (0.38") B. Alpha Centauri A (0.75") C. Procyon (0.28") D. Wolf 359 (0.42") E. Epsilon Eridani (0.31") D(pc) = 1/parallax(arcsecs), D(a.u.) = D(pc) * 206265 (arcsecs per radian)

Respuesta :

Answer:

Following are the answer to this question:

Explanation:

Formula:

[tex]D(PC) =\frac{1}{parallax}\\\\D(av)=D(PC) \times 20.626\ J[/tex]

Calculating point A:

when the value is [tex]0.38[/tex]

[tex]\to 0.38 \toD(PC)= \frac{1}{0.38}\\\\[/tex]

                   [tex]=2.632[/tex]

[tex]\to D(a.v) = \frac{1}{0.38} \times 206265\\[/tex]

               [tex]=542,802.6[/tex]

Calculating point B:

when the value is [tex]0.75[/tex]

[tex]\to D(PC)=\frac{1}{0.75}[/tex]

                [tex]=1.33[/tex]

[tex]\to D(a.v) = \frac{1}{0.75} \times 206265\\[/tex]

             [tex]=275,020[/tex]

Calculating point C:

when the value is [tex]0.28[/tex]

[tex]\to D(PC)=\frac{1}{0.28}[/tex]

                [tex]=3.571[/tex]

[tex]\to D(a.v) = \frac{1}{0.28} \times 206265\\[/tex]

               [tex]=736660.7[/tex]

Calculating point D:

when the value is [tex]0.42[/tex]

[tex]\to D(PC)=\frac{1}{0.42}[/tex]

                [tex]=2.38[/tex]

[tex]\to D(a.v) = \frac{1}{0.42} \times 206265\\[/tex]

               [tex]=490910.7[/tex]

Calculating point E:

when the value is [tex]0.31[/tex]

[tex]\to D(PC)=\frac{1}{0.31}[/tex]

                [tex]=3.226[/tex]

[tex]\to D(a.v) = \frac{1}{0.31} \times 206265\\[/tex]

               [tex]=665370.97[/tex]