Respuesta :
Answer:
3.4093
Explanation:
NPSHa = hatm + hel + hf +hva
the elevation head is the hel
friction loss head is hf
NPSHa is the head of vapour pressure of fluid
atmospheric pressure head is hatm
log₁₀P* = [tex]A -\frac{B}{C+T}[/tex]
[tex]A, B, C are fixed[/tex]
log₁₀Pv = [tex]4.07827-\frac{1343.943}{387.15-53.773}[/tex]
= 4.07827 - 1343.943/333.377
=4.07827 - 4.0313009
= 0.0469691
we take the log
p* = 1.114218
we convert this value to get 111421.8
hvap = 111421.8 * 1/776.14 * 1/9.81
= 14.63
hatm = 1.1 *101325/1 * 1/9.81 *1/776.14
=14.64
hf = 7000/1 * 1/776.14 * 1/9.81
= 0.9193
NPSHa = 2.5
hel = 0.9193 + 2.5 + 14.63 - 14.64
hel = 3.4093
The NSPH values are used to calculate cavitation. The vapor pressure of the liquid is 1.114 atm.
The vapor pressure can be calculated by,
[tex]\mathrm {NPSH_A}= ( \frac {p_i}{\rho g} + \frac {V_i^2}{2g})- \frac {p_v}{\rho g}[/tex]
Where,
[tex]\mathrm {NPSH_A}[/tex] = available NPSH
[tex]p_i[/tex] = absolute pressure at the inlet = 1.1 atm
[tex]V_i[/tex] = average velocity at the inlet = 10, 000 kg/h
[tex]\rho[/tex] = fluid density = 886 kg/m3.
g = acceleration of gravity = 9.8 m/s²
[tex]p_v[/tex] = vapor pressure of the fluid = ?
Put the values in the equation, we get
[tex]p_v = 1.114\ atm[/tex]
Therefore, the vapor pressure of the liquid is 1.114 atm.
To know more about vapor pressure:
https://brainly.com/question/25356241