The element sodium can emit light at two wavelengths, λ1 = 588.9950 nm and λ2 = 589.5924 nm. Light in sodium is being used in a Michelson interferometer. Through what distance must mirror M 2 be moved if the shift in the fringe pattern for one wavelength is to be 1.00 fringe more than the shift in the fringe pattern for the other wavelength?

Respuesta :

Answer:

The distance is  [tex]d = 0.00029065 \ m[/tex]

Explanation:

From the question we are told that

    The  first wavelength is  [tex]\lambda _1 = 588.9950 nm = 588.9950 *10^{-9} \ m[/tex]

     The  second wavelength is  [tex]\lambda _2 = 589.5924 nm = 589.5924 *10^{-9} \ m[/tex]

     The  difference in the  fringe pattern is  n =  1.0  

Generally the equation defining the effect of the movement of  the mirror M 2 in a Michelson interferometer is mathematically represented as

          [tex]2 * d = [\frac{\lambda _1 * \lambda_2 }{\lambda_2 - \lambda _1 } ] * n[/tex]

Here d is the mirror M 2  must be moved

substituting values

         [tex]2 * d = [\frac{(588.9950*10^{-9} ) * (589.5924 *10^{-9}) }{(589.5924 *10^{-9}) - (588.9950*10^{-9} ) } ] * 1.0[/tex]

        [tex]d = 0.00029065 \ m[/tex]