Answer: [tex]\Delta S[/tex] = 473.92J/K.mol
Explanation: In physics, Entropy is defined as a degree of disorder in a system. Entropy change is given by the sum of all the products multiplied by their respective coeficients minus the sum of all the reagents multiplied by their respective coeficients:
[tex]\Delta S = m\Sigma product - n\Sigma reagent[/tex]
The balanced reaction:
[tex]H_{2}S_{(g)}+2H_{2}O_{(l)}=>3H_{2}_{(g)}+SO_{2}_{(g)}[/tex]
gives the proportion reagents react to form products, so, if 1.6 moles of [tex]H_{2}S_{(g)}[/tex]:
3.2 moles of water is used;
4.8 moles of hydrogen gas is formed;
1.6 moles of sulfur dioxide is also formed;
Calculating entropy change:
[tex]\Delta S = (4.8*131+1.6*248.8)-(1.6*205.6+3.2*70)[/tex]
[tex]\Delta S=628.8+398.08-328.96-224[/tex]
[tex]\Delta S[/tex] = 473.92J/K.mol
Entropy change for the given chemical reaction is [tex]\Delta S[/tex] = 473.92J/K.mol