Suppose that the Blood Alcohol Content (BAC) of students who drink five beers varies from student to student according to a Normal distribution with mean 0.07 ans standard deviation 0.01.

1. The middle 95% of students who drink five beers have a BAC between

a. 0.06 and 0.08 b. 0.05 and 0.09 c. 0.04 and 0.10 d. 0.03 and 0.11

2. What percent of students who drink five beers have a BAC above 0.08 (the legal limit for driving in most states)?

a. 0.15% b. 0.3% c. 2.5% d. 16% e. 32%

3. What percent of students who drink five beers have a BAC above 0.10 (the legal limit for driving in most states)?

a. 0.15% b. 0.3% c. 2.5% d. 16% e. 32%

Respuesta :

Answer:

1.    b. 0.05 and 0.09

2.   d. 16%

3.    a. 0.15%

Step-by-step explanation:

Given that :

mean = 0.07

standard deviation = 0.01

Confidence interval = 95%

The level of significance ∝= 1 - 0.95 = 0.05

At 0.05 level of significance,

critical value for [tex]z_{\alpha/2} = z_{0.05/2}[/tex]

critical value for [tex]z_{0.025}[/tex]  = 1.96

Confidence interval = [tex]\mathtt{\mu \pm ( {z} \times{\sigma})}[/tex]

Lower limit = [tex]\mathtt{\mu -( {z} \times{\sigma})}[/tex]

Upper Limit = [tex]\mathtt{\mu +( {z} \times{\sigma})}[/tex]

Lower limit = [tex]\mathtt{0.07 - ({1.96} \times {0.01})}[/tex]

Upper limit = [tex]\mathtt{0.07 + ({1.96} \times {0.01})}[/tex]

Lower limit = 0.07 - 0.0196

Upper limit = 0.07 + 0.0196

Lower limit = 0.0504  [tex]\simeq[/tex] 0.05

Upper limit = 0.0896    [tex]\simeq[/tex] 0.09

The confidence interval of 95% is ( 0.05, 0.09)

2. What percent of students who drink five beers have a BAC above 0.08 (the legal limit for driving in most states)?

[tex]P(X> 0.08) = P(\dfrac{0.08 - \mu}{\sigma} > \dfrac{X - \mu}{\sigma} )[/tex]

[tex]P(X > 0.08) = P(z > \dfrac{0.08 - 0.07}{0.01} )[/tex]

[tex]P(X > 0.08) = P(z > \dfrac{0.01}{0.01} )[/tex]

[tex]P(X > 0.08) = P(z > 1 )[/tex]

[tex]P(X> 0.08) = 1- P(z < 1 )[/tex]

P(X > 0.08) = 1 - 0.8413

P(X > 0.08) = 0.1587

P(X > 0.08) [tex]\simeq[/tex] 16%  

3. What percent of students who drink five beers have a BAC above 0.10 (the legal limit for driving in most states)?

[tex]P(X> 0.10) = P(\dfrac{0.10 - \mu}{\sigma} > \dfrac{X - \mu}{\sigma} )[/tex]

[tex]P(X > 0.10) = P(z > \dfrac{0.10 - 0.07}{0.01} )[/tex]

[tex]P(X > 0.10) = P(z > \dfrac{0.03}{0.01} )[/tex]

[tex]P(X > 0.10) = P(z > 3)[/tex]

[tex]P(X> 0.10) = 1- P(z < 3 )[/tex]

P(X > 0.10) = 1 - 0.9987

P(X > 0.08) = 0.0013

P(X > 0.08) [tex]\simeq[/tex] 0.15%  which is the closet value to 0.0013