PLEASE HELP ASAP WILL GIVE BRAINLY!!!!!!Some of the steps in the derivation of the quadratic formula are shown:
Step 3: –c + StartFraction b squared Over 4 a EndFraction = a(x squared + StartFraction b Over a EndFraction x + StartFraction b squared Over 4 a squared EndFraction)

Step 4a: –c + StartFraction b squared Over 4 a EndFraction = a(x + StartFraction b Over 2 a EndFraction) squared

Step 4b: negative StartFraction 4 a c Over 4 a EndFraction + StartFraction b squared Over 4 a EndFraction = a(x + StartFraction b Over 2 a EndFraction) squared

Which best explains or justifies Step 4b?

factoring a polynomial
multiplication property of equality
converting to a common denominator
addition property of equality
.

Respuesta :

Answer:

i think it is the third one but dont know just an educational geuss

Step-by-step explanation:

The given steps from the derivation of the quadratic formula are:

Step 3:  [tex]-c+\frac{b^2}{4a}=a(x^2+\frac{b}{a}x+\frac{b^2}{4a^2})[/tex]

Step 4a: [tex]-c+\frac{b^2}{4a}=a(x+\frac{b}{2a})^2[/tex]

Step 4b: [tex]\frac{-4ac}{4a}+\frac{b^2}{4a}=a(x+\frac{b}{2a})^2[/tex]

The property "converting to a common denominator" justifies step 4b. So, option C: "converting to a common denominator" is correct.

What is the quadratic formula?

The quadratic formula is as follows:

x = [-b ± (√b²+4ac)]/2a

This formula is derived from the quadratic equation [tex]ax^2+bx+c=0[/tex].

What are the steps to derive the quadratic formula?

The standard quadratic equation is [tex]ax^2+bx+c=0[/tex]

Step 1: [tex]ax^2+bx=-c[/tex]

Step 2: Taking 'a' as common

[tex]a(x^2+\frac{b}{a}x)=-c[/tex]

Step 3: Adding [tex]\frac{b^2}{4a}[/tex] on both sides

[tex]-c+\frac{b^2}{4a}=a(x^2+\frac{b}{a}x)+\frac{b^2}{4a}[/tex]

⇒ [tex]-c+\frac{b^2}{4a}=a(x^2+\frac{b}{a}x+\frac{b^2}{4a^2})[/tex]

Step 4a: Factoring the polynomial

[tex]-c+\frac{b^2}{4a}=a(x+\frac{b}{2a})^2[/tex]

Step 4b: Converting to a common denominator

[tex]\frac{-4ac}{4a}+\frac{b^2}{4a}=a(x+\frac{b}{2a})^2[/tex]

⇒ [tex]\frac{(-4ac+b^2)}{4a}=a(x+\frac{b}{2a})^2[/tex]

Step 5: Applying square root (on one side there is a square, so, on the other side it gets ±)

⇒ [tex]\frac{(-4ac+b^2)}{4a^2}=(x+\frac{b}{2a})^2[/tex]

⇒ ±[tex]\sqrt{\frac{(-4ac+b^2)}{4a^2}} =(x+\frac{b}{2a})[/tex]

⇒ [tex]x+\frac{b}{2a}[/tex] = ± [tex]\frac{\sqrt{b^2-4ac} }{2a}[/tex]

step 6: Subtacting [tex]\frac{b}{2a}[/tex] from both the sides

⇒ [tex]x=-\frac{b}{2a}[/tex] ± [tex]\frac{\sqrt{b^2-4ac} }{2a}[/tex]

⇒ x = [-b ± (√b²+4ac)]/2a

Thus, step 4b best explains or justifies the property "Converting to a common denominator".

Learn more about quadratic formula here:

https://brainly.com/question/9929333

#SPJ2