Answer:
The remaining dimensions of the triangle are [tex]A \approx 31.7368^{\circ}[/tex], [tex]C \approx 18.2632^{\circ}[/tex] and [tex]a \approx 45.3201[/tex].
Step-by-step explanation:
As angle B is an obtuse angle, Angle C can be obtained by means of the Law of Sine:
[tex]\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]
[tex]\sin C = \frac{b}{c}\cdot \sin B[/tex]
[tex]C = \sin^{-1}\left(\frac{b}{c}\cdot \sin B \right)[/tex]
Where:
[tex]b[/tex], [tex]c[/tex] - Measures of triangle sides, dimensionless.
[tex]B[/tex], [tex]C[/tex] - Measures of angles, measured in degrees.
If [tex]b = 27[/tex], [tex]c = 66[/tex] and [tex]B =130^{\circ}[/tex], then:
[tex]C = \sin^{-1}\left(\frac{27}{66}\cdot \sin 130^{\circ} \right)[/tex]
[tex]C \approx 18.2632^{\circ}[/tex]
Given that sum of internal angles in triangles equals to 180º, the angle A is now determined:
[tex]A = 180^{\circ}-B-C[/tex]
[tex]A = 180^{\circ}-130^{\circ}-18.2632^{\circ}[/tex]
[tex]A \approx 31.7368^{\circ}[/tex]
Lastly, the length of the side [tex]a[/tex] is calculated by Law of Cosine:
[tex]a = \sqrt{b^{2}+c^{2}-2\cdot b\cdot c\cdot \cos A}[/tex]
[tex]a =\sqrt{27^{2}+66^{2}-2\cdot (27)\cdot (66)\cdot \cos 31.7368^{\circ}}[/tex]
[tex]a \approx 45.3201[/tex]
The remaining dimensions of the triangle are [tex]A \approx 31.7368^{\circ}[/tex], [tex]C \approx 18.2632^{\circ}[/tex] and [tex]a \approx 45.3201[/tex].