If triangle ABC, m B = 90°, cos(9 = 17, and AB = 16 units.
Based on this information, m Note that the angle measures are rounded to the nearest degree.
units.

If triangle ABC m B 90 cos9 17 and AB 16 units Based on this information m Note that the angle measures are rounded to the nearest degree units class=

Respuesta :

Answer:

m∠A = 62°

m∠C = 28°

AC = 17 units

Step-by-step explanation:

In the given triangle ABC,

m∠B = 90°, Cos(C) = [tex]\frac{15}{17}[/tex] and AB = 16 units

Since, Cos(C) = [tex]\frac{\text{Corresponding side}}{\text{Hypotenuse}}[/tex]

Cos(C) = [tex]\frac{\text{Corresponding side}}{\text{Hypotenuse}}=\frac{15}{17}[/tex]

[tex]\text{C}=\text{Cos}^{-1}(\frac{15}{17})[/tex]

m∠C = 28.07°

m∠C ≈ 28°

Therefore, side BC = 15 units and AC = 17 units

Now we apply Sine rule in the given triangle.

Sin(A) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

         = [tex]\frac{\text{BC}}{\text{AC}}[/tex]

         = [tex]\frac{15}{17}[/tex]

A = [tex]\text{Sin}^{-1}(\frac{15}{17} )[/tex]

A = 61.93°

m∠A = 62°

Ver imagen eudora