Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) an = 1/sqrt(n)

Respuesta :

This sequence converges to 0.

Proof: Recall that

[tex]\displaystyle\lim_{n\to\infty}\frac1{\sqrt n}=0[/tex]

is to say that for any given [tex]\varepsilon>0[/tex], there is some [tex]N[/tex] for which [tex]\left|\frac1{\sqrt n}-0\right|=\frac1{\sqrt n}<\varepsilon[/tex] for all [tex]n>N[/tex].

Let [tex]N=\left\lceil\frac1{\varepsilon^2}\right\rceil[/tex]. Then

[tex]n>\left\lceil\dfrac1{\varepsilon^2}\right\rceil\ge\dfrac1{\varepsilon^2}[/tex]

[tex]\implies\dfrac1n<\varepsilon^2[/tex]

[tex]\implies\dfrac1{\sqrt n}<\varepsilon[/tex]

as required.