Respuesta :

Answer:

Option (1)

Step-by-step explanation:

The given triangle JKL is an equilateral triangle.

Therefore, all three sides of this triangle will be equal in measure.

Side JK = JL = KL = 48 units

Perpendicular LM drawn to the base JK bisects the base in two equal parts JM and MK.

By applying tangent rule in ΔJML,

tan(∠KJL) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

                = [tex]\frac{\text{LM}}{\text{JM}}[/tex]

                = [tex]\frac{\text{LM}}{24}[/tex]

Since, Sin(K) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

Sin(60)° = [tex]\frac{\text{LM}}{48}[/tex]

[tex]\frac{\sqrt{3}}{2}=\frac{\text{LM}}{48}[/tex]

LM = 24√3

Now, tan(∠KJL) = [tex]\frac{\text{LM}}{24}[/tex]

                          = [tex]\frac{24\sqrt{3} }{24}[/tex]

Therefore, Option (1) will be the answer.