If the average yield of cucumber acre is 800 kg, with a variance 1600 kg, and that the amount of the cucumber follows the normal distribution. 1- What percentage of a cucumber give the crop amount between 778 and 834 kg? 2- What the probability of cucumber give the crop exceed 900 kg ?

Respuesta :

Answer:

a

   The  percentage is

            [tex]P(x_1 < X < x_2 ) = 51.1 \%[/tex]

b

   The probability is  [tex]P(Z > 2.5 ) = 0.0062097[/tex]

Step-by-step explanation:

From the question we are told that

        The  population mean is  [tex]\mu = 800[/tex]

        The  variance is  [tex]var(x) = 1600 \ kg[/tex]

        The  range consider is  [tex]x_1 = 778 \ kg \ x_2 = 834 \ kg[/tex]

         The  value consider in second question is  [tex]x = 900 \ kg[/tex]

Generally the standard deviation is mathematically represented as

        [tex]\sigma = \sqrt{var (x)}[/tex]

substituting value

        [tex]\sigma = \sqrt{1600}[/tex]

       [tex]\sigma = 40[/tex]

The percentage of a cucumber give the crop amount between 778 and 834 kg  is mathematically represented as

       [tex]P(x_1 < X < x_2 ) = P( \frac{x_1 - \mu }{\sigma} < \frac{X - \mu }{ \sigma } < \frac{x_2 - \mu }{\sigma } )[/tex]

    Generally  [tex]\frac{X - \mu }{ \sigma } = Z (standardized \ value \ of \ X)[/tex]

So

      [tex]P(x_1 < X < x_2 ) = P( \frac{778 - 800 }{40} < Z< \frac{834 - 800 }{40 } )[/tex]

      [tex]P(x_1 < X < x_2 ) = P(z_2 < 0.85) - P(z_1 < -0.55)[/tex]

From the z-table  the value for  [tex]P(z_1 < 0.85) = 0.80234[/tex]

                                            and [tex]P(z_1 < -0.55) = 0.29116[/tex]  

So

             [tex]P(x_1 < X < x_2 ) = 0.80234 - 0.29116[/tex]

             [tex]P(x_1 < X < x_2 ) = 0.51118[/tex]

The  percentage is

            [tex]P(x_1 < X < x_2 ) = 51.1 \%[/tex]

The probability of cucumber give the crop exceed 900 kg is mathematically represented as

             [tex]P(X > x ) = P(\frac{X - \mu }{\sigma } > \frac{x - \mu }{\sigma } )[/tex]

substituting values

             [tex]P(X > x ) = P( \frac{X - \mu }{\sigma } >\frac{900 - 800 }{40 } )[/tex]

             [tex]P(X > x ) = P(Z >2.5 )[/tex]

From the z-table  the value for  [tex]P(Z > 2.5 ) = 0.0062097[/tex]