Respuesta :
Answer:
35.11 ft
Step-by-step explanation:
This given situation can be thought of as triangle [tex]\triangle PQR[/tex] where PQ is the length of pole.
PR is the length of rope.
and QR is the distance of bottom of pole to the point of fastening of rope to the ground.
And [tex]\angle Q \neq 90^\circ[/tex]
Given that:
PQ = 44 ft
PR = 51 ft
[tex]\angle R = 58^\circ[/tex]
To find:
Side QR = ?
Solution:
We can apply Sine Rule here to find the unknown side.
Sine Rule:
[tex]\dfrac{a}{sinA} = \dfrac{b}{sinB} = \dfrac{c}{sinC}[/tex]
Where
a is the side opposite to [tex]\angle A[/tex]
b is the side opposite to [tex]\angle B[/tex]
c is the side opposite to [tex]\angle C[/tex]
[tex]\dfrac{PR}{sinQ}=\dfrac{PQ}{sinR}\\\Rightarrow sin Q =\dfrac{PR}{PQ}\times sinR\\\Rightarrow sin Q =\dfrac{51}{44}\times sin58^\circ\\\Rightarrow \angle Q =79.41^\circ[/tex]
Now,
[tex]\angle P +\angle Q +\angle R =180^\circ\\\Rightarrow \angle P +58^\circ+79.41^\circ=180^\circ\\\Rightarrow \angle P = 42.59^\circ[/tex]
Let us use the Sine rule again:
[tex]\dfrac{QR}{sinP}=\dfrac{PQ}{sinR}\\\Rightarrow QR =\dfrac{sinP}{sinR}\times PQ\\\Rightarrow QR =\dfrac{sin42.59}{sin58}\times 44\\\Rightarrow QR = 35.11\ ft[/tex]
So, the answer is 35.11 ft.
