A damped oscillator is released from rest with an initial displacement of 10.00 cm. At the end of the first complete oscillation, the displacement reaches 9.05 cm. When 4 more oscillations are completed, what is the displacement reached

Respuesta :

Answer:

The  displacement is  [tex]A_r = 6.071 \ cm[/tex]

Explanation:

From the question we are told that

   The initial displacement is [tex]A_o = 10 \ cm[/tex]

     The displacement at the end of first oscillation is  [tex]A_d = 9.05 \ cm[/tex]

     

Generally the damping constant of this damped oscillator is mathematically represented as  

           [tex]\eta = \frac{A_d}{A_o}[/tex]

substituting values

           [tex]\eta = \frac{9.05}{10}[/tex]

        [tex]\eta = 0.905[/tex]

The displacement after 4 more oscillation is mathematically represented as

       [tex]A_r = \eta^4 * A_d[/tex]

substituting values

      [tex]A_r = (0.905)^4 * (9.05)[/tex]

      [tex]A_r = 6.071 \ cm[/tex]

Answer:

Displacement reached is 6.0708 cm

Explanation:

Formula for damping Constant "C"

[tex]C^n=\frac{A_2}{A_1}[/tex]                  where n=1,2,3,........n

Where:

[tex]A_2[/tex] is the displacement after first oscillation    

[tex]A_1\\[/tex] is the initial Displacement

[tex]A_1=10\ cm\\A_2=9.05\ cm\\[/tex]

In our case, n=1.

[tex]C=\frac{9.05}{10}\\C=0.905[/tex]

After 4 more oscillation, n=4:

[tex]C^4=\frac{A_6}{A_2}[/tex]                                        

Where:

[tex]A_6[/tex] is the final Displacement after 4 more oscillations.

[tex]A_6=(0.905)^4*(9.05)\\A_6=6.0708\ cm[/tex]

Displacement reached is 6.0708 cm