Suppose P( A) = 0.60, P( B) = 0.85, and A and B are independent. The probability of the complement of the event ( A and B) is: a. .4 × .15 = .060 b. 0.40 + .15 = .55 c. 1 − (.40 + .15) = .45 d. 1 − (.6 × .85) = .490

Respuesta :

Answer: a. 0.4 × 0.15 = 0.060

Step-by-step explanation: Probability of the complement of an event is the one that is not part of the event.

For P(A):

P(A') = 1 - 0.6

P(A') = 0.4

For P(B):

P(B') = 1 - 0.85

P(B') = 0.15

To determine probability of A' and B':

P(A' and B') = P(A')*P(B')

P(A' and B') = 0.4*0.15

P(A' and B') = 0.06

Probability of the complement of the event is 0.060