Respuesta :

Answer:  a = 11.24    B = 75.5°       C = 53.5°

Step-by-step explanation:

Use Law of Cosines to find a: a² = b² + c² - 2bc · cos A

Given: b = 14, c = 6, A = 51°

a² = (14)² + (6)² - 2(14)(6) · cos 51°

a² = 196 + 36 - 168 · cos 51°

a² = 232 - 105.72

a² = 126.27

a = 11.24

Use Law of Sines to find B: [tex]\dfrac{\sin A}{a}=\dfrac{\sin B}{b}[/tex]

Given: A = 51°, a = 11.24, b = 14

[tex]\dfrac{\sin 51^o}{11.24}=\dfrac{\sin B}{14}\\\\\\\dfrac{14\sin51^o}{11.24}=\sin B\\\\\\\sin^{-1}\bigg(\dfrac{14\sin51^o}{11.24}\bigg)=B\\\\\\75.5^0=B[/tex]

Use Triangle Sum Theorem to find C: A + B + C = 180°

Given: A = 51°, B = 75.5°

51° + 75.5° + C = 180°

126.5° + C = 180°

             C = 53.5°