Answer:
[tex] \boxed{\sf Acceleration \ (a) = 2 \ m/s^{2}} [/tex]
[tex] \boxed{\sf Distance \ covered \ (s) = 100 \ m} [/tex]
Given:
Initial velocity (u) = 0 m/s
Final velocity (v) = 20 m/s
Time taken (t) = 10 sec
To Find:
(i) Acceleration (a)
(ii) Distance covered (s)
Explanation:
[tex]\sf (i) \ From \ 1^{st} \ equation \ of \ motion:[/tex]
[tex] \sf \implies v = u + at[/tex]
[tex] \sf \implies 20 = 0 + a(10)[/tex]
[tex] \sf \implies 10a = 20[/tex]
[tex] \sf \implies \frac{10a}{10} = \frac{20}{10} [/tex]
[tex] \sf \implies a = 2 \: m/ {s}^{2} [/tex]
[tex]\sf (ii) \ From \ 2^{nd} \ equation \ of \ motion:[/tex]
[tex] \sf \implies s = ut + \frac{1}{2} a {t}^{2} [/tex]
[tex]\sf \implies s = (0)(10) + \frac{1}{2} \times 2 \times {(10)}^{2} [/tex]
[tex]\sf \implies s = \frac{1}{ \cancel{2}} \times \cancel{2} \times {(10)}^{2} [/tex]
[tex]\sf \implies s = {10}^{2} [/tex]
[tex]\sf \implies s = 100 \: m[/tex]