An eletric pump in the ground floor
building taken 15 then to fill
a tank of volume 300
3003 with water
If the tank in 40met above the ground
and the efficiency of the pump
not
find the electric power consumed by
the pump in filling
the tank​

Respuesta :

Answer:

The input power is [tex]44.4\times10^{3}\ kW[/tex]

Explanation:

Given that,

Time = 15 min

Volume of water = 30 m³

Height = 40 m

Efficiency = 30%

Density of water = 1000 kg/m³

Suppose, acceleration due to gravity = 10 m/s²

We need to calculate the mass of water pumped

Using formula of mass

[tex]Mass = Volume\times density[/tex]

Put the value into the formula

[tex]Mass=30\times1000[/tex]

[tex]Mass=3\times10^{4}\ kg[/tex]

We need to calculate the output power

Using formula of power

[tex]P_{out}=\dfrac{W}{t}[/tex]

[tex]P_{out}=\dfrac{mgh}{t}[/tex]

Put the value into the formula

[tex]P_{out}=\dfrac{3\times10^{4}\times10\times40}{15\times60}[/tex]

[tex]P_{out}=\dfrac{4}{3}\times10^{4}\ Watt[/tex]

We need to calculate the input power

Using formula of efficiency

[tex]\eta=\dfrac{P_{out}}{P_{in}}[/tex]

[tex]P_{in}=\dfrac{P_{out}}{\eta}[/tex]

Put the value into the formula

[tex]P_{in}=\dfrac{4\times100\times10^{4}}{3\times30}[/tex]

[tex]P_{in}=\dfrac{4\times10^{5}}{9}\ Watt[/tex]

[tex]P_{in}=44.4\times10^{3}\ kW[/tex]

Hence, The input power is [tex]44.4\times10^{3}\ kW[/tex]