Respuesta :
The right question is:
[tex]\frac{1}{2}x - 3y = 9[/tex]
[tex]5x + y = 28[/tex]
Answer:
[tex]x = 6[/tex]
[tex]y = -2[/tex]
Step-by-step explanation:
Given
[tex]\frac{1}{2}x - 3y = 9[/tex]
[tex]5x + y = 28[/tex]
Required
Solve for x and y
Make y the subject of formula in the second equation
[tex]y = 28 - 5x[/tex]
Substitute [tex]y = 28 - 5x[/tex] in the first equation
[tex]\frac{1}{2}x - 3(28 - 5x) = 9[/tex]
Open the bracket
[tex]\frac{1}{2}x - 3*28 - 3*- 5x = 9[/tex]
[tex]\frac{1}{2}x - 84 + 15x = 9[/tex]
Collect Like Terms
[tex]\frac{1}{2}x + 15x = 9+ 84[/tex]
[tex]\frac{x}{2} + 15x = 9+ 84[/tex]
[tex]\frac{x+30x}{2} = 93[/tex]
[tex]\frac{31x}{2} = 93[/tex]
Multiply both sides by 2
[tex]2 * \frac{31x}{2} = 93 * 2[/tex]
[tex]31x = 186[/tex]
Divide both sides by 31
[tex]\frac{31x}{31} = \frac{186}{31}[/tex]
[tex]x = \frac{186}{31}[/tex]
[tex]x = 6[/tex]
Recall that [tex]y = 28 - 5x[/tex]
So;
[tex]y = 28 - 5 * 6[/tex]
[tex]y = 28 - 30[/tex]
[tex]y = -2[/tex]
Hence;
[tex]x = 6[/tex] and [tex]y = -2[/tex]