Respuesta :

Answer:

fourth option

Step-by-step explanation:

∠ FTC = ∠ MTL ( vertical angles )

Since FC and ML are parallel, then

∠ FCT = ∠ TML (corresponding angles )

Thus

Δ TCF ~ Δ TML by the AA postulate

Answer:

[tex]\large \boxed{\mathrm{similar, \ AA \ similarity}, \ \Delta TML}[/tex]

Step-by-step explanation:

The two triangles are similar.

We can prove by angle-angle similarity, in [tex]\mathrm{AA}[/tex] similarity, there are two pairs of congruent corresponding angles in two triangles, this proves the two triangles are similar.

[tex]\angle U[/tex] and [tex]\angle M[/tex] are a pair of congruent corresponding angles.

[tex]\angle V[/tex] and [tex]\angle L[/tex] are a pair of congruent corresponding angles.

Therefore,

[tex]\Delta TUV \sim \Delta TML[/tex]

Ver imagen 09pqr4sT