Respuesta :
Answer:
β particles
Explanation:
The most common radioactive isotope of carbon is C-13.
The unbalanced nuclear equation is
[tex]\rm _{6}^{13}C \longrightarrow \, ? + \, _{7}^{13N}[/tex]
Let's write the question mark as a nuclear symbol.
[tex]\rm _{6}^{13}C} \longrightarrow \, _{Z}^{A}X+ \, _{7}^{13}N[/tex]
The main point to remember in balancing nuclear equations is that the sums of the superscripts and the subscripts must be the same on each side of the equation.
Then
13 = A + 13, so A = 13 - 13 = 0, and
6 = Z + 7, so Z = 6 - 7 = -1
Then, your nuclear equation becomes
[tex]\rm _{6}^{13}C \longrightarrow \, _{-1}^{0}M + \, _{7}^{13}N[/tex]
The particle with "zero" mass and a charge of -1 is an electron, so the balanced nuclear equation is
[tex]\rm _{6}^{13}C \longrightarrow \, _{-1}^{0}e + \, _{7}^{13}N[/tex]
The radiation consists of β particles (electrons)
Answer:
I think think that the one above me is beta radiation
Explanation: