Answer:
(5,2)
Step-by-step explanation:
The 90° clockwise rule (for around the origin) is: [tex](x,y)\rightarrow(y,-x)[/tex]
Apply the rule to point A:
[tex]\left \{ {(-2,5)\rightarrow(5,2)} \atop {(x,y)\rightarrow(y,-x)}} \right.[/tex]
A' should be (5,2).
Answer:
Step-by-step explanation:
The general rule for rotation of an object 90 degrees is (x, y) to (-y, x)
so for point A(-2,5), A' will be (5,2)
to find the new
X=xcos(θ)+ysin(θ)
X=-2(cos90)+5sin90 ( cos90=0, sin 90=1)
to find the new
Y=−xsin(θ)+ycos(θ)
Y=-(-2)sin90+5cos90